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Nearly all routine clinical imaging in MRI is based on Cartesian sampling (measuring 
Fourier data on a regularly spaced rectlinear grid).  This is true despite a large body of 
work has illustrated the potential benefits of various non-Cartesian methods (radial, 
spiral, etc.) in a variety of applications.  These can include scan efficiency (maximum k-
space coverage per time), robustness against motion, the ability to minimize T2(*) decay 
in the center of k-space, and general flexibility in measurement strategies.  There are 
various reasons for the nearly complete lack of non-Cartesian methods in routine 
practice, one of them being the fidelity and simplicity of reconstruction (the subject of 
this abstract).

Reconstruction of Cartesian-sampled data is easy.  If data are collected on a regularly 
spaced rectilinear grid in k-space, then (1) reconstruction can be performed rapidly 
using the Fast Fourier transform, (2) k-space is be measured uniformly, which prevents 
noise coloring and amplification in the image, (3) the Nyquist sampling criterion is well 
understood and can be met exactly, and (4) the point spread function (PSF) is well-
behaved, and resolution is easily determined.  All of this results in rapid reconstruction 
of an ‘exact’ image consistent with the measured data which is well characterized, and 
minimizes noise effects.

There has been a great deal of work in developing reconstruction methods for data from 
Non-Cartesian methods, to increase speed and fidelity, as well as to characterize noise 
behavior and resulting PSF’s (which reflect both resolution and aliasing). 

2.  Gridding Basics
The image f(x,y) is defined as the Fourier transform of it’s Fourier representation F(kx,ky) 
by the Fourier equation

! f(x, y) =
∫

F (kx, ky)expi2π[kxx+kyy]
.! [1]

For gridding reconstruction, this is typically estimated using four steps[1]: sampling 
density compensation, interpolating the data onto a Cartesian grid (the “gridding” 
process), Fourier transforming the data, and applying a rolloff correction filter.  As 
outlined in [1], density compensation and gridding may be mathematically expressed as:
! Fg = [(FSW )

⊗
C]R ,! [2]

where Fg is the data after gridding, S is a series of delta functions in k-space to 
represent the sampling locations, W is a sampling density weighting correction applied 
to the delta functions, C is the convolution kernel used for gridding, R is a rectangular 
grid of delta functions used for re-sampling, and ⊗ is the convolution operator.  This is 

very well explained in reference [1], and illustrated in Fig. 1.

2.1.  Gridding
This process takes place after Sampling Density Compensation, but it is easier to 
consider this process first.  To make use of the FFT, measured data F are interpolated 
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Fig. 1.  Effects 
of sampling and 
gridding 
reconstruction.

Column A: 
F(kx,ky) 
(magnitude 
raised to 0.25 
power for 
visualization).

Column B: f(x,y) 
(image FOV = 
64 pixels, 
image zero-
padded to 512 
pixels for 
illustration)

Column C: 3D 
rendering of 
f(x,y).

Row 1: Original 
data.

Row 2: 
Measured 
(sampled) data.

Row 3: Row 2 
data after 
density 
correction.

Row 4: Row 3 
data after 
convolution 
with C.

Row 5: Row 4 
data after 
sampling on 
Cartesian grid.
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onto a Cartesian Grid using a convolution kernel c, so that the interpolated data Fg are 
given by a weighted summation of all neighboring measure data, i.e.
! Fg(i, j) =

∑
F (n)c[kx(n), ky(n), kx(i, j), ky(i, j)],! [3]

where c generally weights the contributions of F(n) (the nth measured data point) to Fg 
based on the distance from the measured sample point {kx(n), ky(n)}to the point on the 
Cartesian grid {kx(i,j), ky(i,j)}.  Note that Eq. [2] represents the convolution by C and the 
multiplication by R in Eq. [2].  The convolution kernel can be fixed[1], or it vary in k-space 
based on some measure of optimality[2,3].

The choice of C and R trades off reconstruction efficiency with image accuracy (a wider 
C and more densely packed R reduce error but increase gridding time and post-gridding 
FFT time, respectively).  An excellent review of this is given in reference [4].

2.2 Sampling Density Compensation:
The gridding process, as it is written in Eq. [2], will generally make the value of Fg 
proportional to the sampling density.  For this reason, data are normalized by the 
inverse of their sampling density prior to gridding.  Although this can in principle be done 
after gridding, it is generally necessary to do this first to retain accuracy in the gridding 
process.  Figure 2 gives a simple illustration of the benefits of sampling density prior to 
gridding.  The value of Fx when gridded prior to sampling density compensation (Fig. 
1a) will be skewed toward that of F1 and F2, while the value of Fx when gridded after to 
sampling density compensation (Fig. 1b) will be more properly estimated.

!
 (a) (b)
Fig. 2.  Specific example of increased gridding accuracy after density compensation.  Data are sampled 
at locations solid dots 1, 2, and 3 (corresponding to values F1, F2, and F3, respectively).  Locations 1 and 
2 are close together, so that F1 = F2 (plus noise); all three sampling locations are equidistant (distance = r) 
from the point to be estimated, denoted by “x”.  Without sampling density, (a) the estimate Fx is 
proportional to 2 F1 + F3.  After sampling density, (b) the values of F1 and F2 are reduced by 2, and the 
estimate is now correctly proportional to the average of F1 + F3.

There are a variety of methods for calculating the sampling density, including analytic 
estimates, geometric estimates such as the Voronoi method[5] and numerical methods 
such as proposed by Jackson[1] and later extended by Pipe[6].

2.3 Rolloff Filter:
The gridding convolution by C effectively 
multiplies the image by its Fourier pair c(x,y), 
which tends to reduce the image values around 
the edges (see Fig. 1, row 4, column C).  The 
final step to gridding reconstruction is division of 
the image by the rolloff filter - this “rolloff 
correction” is shown in Fig. 3.

Fig. 3.  Original image (left), after gridding 
and FFT (middle), and after rolloff 
correction (right).



3.  ADDITIONAL CONSIDERATIONS
3.1.  What is the Nyquist Criterion?
It is helpful to appreciate the complexities of reconstruction by considering the Nyquist 
criterion in 2D non-Cartesian imaging.  The Nyquist sampling limit applies to regularly 
spaced sampling intervals - when data are sampled in a non-regular fashion, this limit 
no longer strictly applies.  One can consider that, given a supported FOV in image 
space, each sampled point is strongly correlated with the values of F within roughly 1/
FOV of that point in k-space, and weakly correlated (to some degree) with points 
beyond the local neighborhood.  Linear reconstruction methods are generally 
approximate attempts at matrix inversion, and areas in k-space that are not strongly 
correlated with any sampling points can cause singularities in the inverted 
“reconstruction” matrix (and thereby can create significant noise amplification) unless 
appropriate regularization is used (e.g. do not use these areas of k-space).  The 
equivalent of the Nyquist Criterion, in qualitative terms, is that sampled points are put in 
a fashion that makes the matrix inversion the most stable.

3.2. Undersampled and Oversampled Data.
When data are undersampled (e.g. do not meet this loose Nyquist Criterion) in parts of 
k-space, one must consider the effects of data weighting and reconstruction.  Data 
weighting can emphasize existing sampling points within the undersampled regions, 
which can improve resolution (i.e. improve the shape of the inner part of the PSF) at the 
expense of increased aliasing (i.e. increase the outer signal in the PSF, which creates 
aliasing).[6]

For oversampled data, data weighting can be adjusted so that “redundant” samples are 
weighted evenly, to maximize SNR, or data can be preferentially weighted based on 
some criterion (e.g. data “goodness”, temporal weightings, etc.)

3.3. Assessing Non-Cartesian reconstruction.
There are several criterion that would benefit the MRI community in assessing Non-
Cartesian reconstruction, such as metrics for resolution between differently shaped 
PSF’s, metrics for colored noise/SNR, general metrics for aliasing error, and a 
quantitative description of either the Nyquist Criterion or of reconstruction (“inversion”) 
stability.
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